Tuesday, February 5, 2019

Non-myeloablative busulfan chimeric mouse models are less pro-inflammatory than head-shielded irradiation for studying immune cell interactions in brain tumours | Journal of Neuroinflammation | Full Text

Non-myeloablative busulfan chimeric mouse models are less pro-inflammatory than head-shielded irradiation for studying immune cell interactions in brain tumours | Journal of Neuroinflammation | Full Text

Journal of Neuroinflammation

Non-myeloablative busulfan chimeric mouse models are less pro-inflammatory than head-shielded irradiation for studying immune cell interactions in brain tumours

  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  • ,
  •  and
  • Email author
Journal of Neuroinflammation201916:25
  • Received: 20 September 2018
  • Accepted: 17 January 2019
  • Published: 

Abstract

Background

Chimeric mouse models generated via adoptive bone marrow transfer are the foundation for immune cell tracking in neuroinflammation. Chimeras that exhibit low chimerism levels, blood-brain barrier disruption and pro-inflammatory effects prior to the progression of the pathological phenotype, make it difficult to distinguish the role of immune cells in neuroinflammatory conditions. Head-shielded irradiation overcomes many of the issues described and replaces the recipient bone marrow system with donor haematopoietic cells expressing a reporter gene or different pan-leukocyte antigen, whilst leaving the blood-brain barrier intact. However, our previous work with full body irradiation suggests that this may generate a pro-inflammatory peripheral environment which could impact on the brain’s immune microenvironment. Our aim was to compare non-myeloablative busulfan conditioning against head-shielded irradiation bone marrow chimeras prior to implantation of glioblastoma, a malignant brain tumour with a pro-inflammatory phenotype.

Methods

Recipient wild-type/CD45.1 mice received non-myeloablative busulfan conditioning (25 mg/kg), full intensity head-shielded irradiation, full intensity busulfan conditioning (125 mg/kg) prior to transplant with whole bone marrow from CD45.2 donors and were compared against untransplanted controls. Half the mice from each group were orthotopically implanted with syngeneic GL-261 glioblastoma cells. We assessed peripheral blood, bone marrow and spleen chimerism, multi-organ pro-inflammatory cytokine profiles at 12 weeks and brain chimerism and immune cell infiltration by whole brain flow cytometry before and after implantation of glioblastoma at 12 and 14 weeks respectively.

Results

Both non-myeloablative conditioning and head-shielded irradiation achieve equivalent blood and spleen chimerism of approximately 80%, although bone marrow engraftment is higher in the head-shielded irradiation group and highest in the fully conditioned group. Head-shielded irradiation stimulated pro-inflammatory cytokines in the blood and spleen but not in the brain, suggesting a systemic response to irradiation, whilst non-myeloablative conditioning showed no cytokine elevation. Non-myeloablative conditioning achieved higher donor chimerism in the brain after glioblastoma implantation than head-shielded irradiation with an altered immune cell profile.

Conclusion

Our data suggest that non-myeloablative conditioning generates a more homeostatic peripheral inflammatory environment than head-shielded irradiation to allow a more consistent evaluation of immune cells in glioblastoma and can be used to investigate the roles of peripheral immune cells and bone marrow-derived subsets in other neurological diseases.

Keywords

  • Chimeric mouse model
  • Head-shielded irradiation
  • Non-myeloablative conditioning
  • Inflammation
  • Glioblastoma
  • Macrophages
  • Microglia

No comments:

Post a Comment